Global Model Fit Test for Nonlinear SEM

Rebecca Büchner, Andreas Klein, & Julien Irmer

Goethe-University Frankfurt am Main

Meeting of the SEM Working Group, 2018
Nonlinear SEM

Measurement Models:

\[\mathbf{x} = \Lambda_x \xi + \delta \]
\[\mathbf{y} = \Lambda_y \eta + \epsilon \]

Structural Model:

\[\eta = \alpha + \Gamma \xi + \xi' \Omega \xi + \zeta \]

→ \(\eta \) and \(\mathbf{y} \) are non-normally distributed.

\(\mathbf{x} \) and \(\mathbf{y} \): observed variables; \(\Lambda_x \) and \(\Lambda_y \): factor loadings; \(\xi \) and \(\eta \): latent variables, \(\xi \) multivariate normally distributed; \(\delta, \epsilon, \) and \(\zeta \): multivariate normally distributed error terms; \(\Omega \) and \(\Gamma \): coefficients
Model Fit Tests for Nonlinear SEM

- χ^2 difference tests (Gerhard et al., 2015)
- Information criteria (AIC, BIC, ...)
- Fit measures to detect omitted nonlinear terms (Klein & Schermelleh-Engel, 2010, Gerhard, Büchner, Klein & Schermelleh-Engel, 2017)
- Inferential tests:
 - The χ^2 test is inappropriate for nonlinear SEM (cf. Mooijaart & Satorra, 2009)
 - For nonlinear SEM no other inferential test has yet been developed

Aim

Development of a new inferential test for nonlinear SEM similar to the χ^2 test.
Procedure

1. Estimation Using Quasi-ML
2. Saturated Model
3. A Quasi-Likelihood Ratio Test
4. Simulation Study
Quasi-Maximum Likelihood

- Estimation method very similar to ML
- Difference: distributional assumptions are not fully met
- Correct standard errors and the distribution of likelihood ratio test statistics can be calculated

Simplified QML (sQML)

\[f(x, y) = f_1(x)f_2(y|x) \]
\[\approx f_1(x)f_2^*(y|x) \]

Idea

\[f_2(y|x) \] is approximated by a multivariate normal distribution
\[f_2^*(y|x) \]
sQML - Log-likelihood Function

\(f_2(y|x) \):
- \(\mu_T(x) \) is a polynomial of degree two in \(x \)
- Model implied covariance matrix \(\Sigma_{y|x} \)
- Unconstrained covariance matrix \(\Sigma_T^{y|x} \)

\[
LL^T_{\vartheta}(x, y) = \frac{1}{N} \sum_{i=1}^{N} \left(\ln f_1(x_i) + \ln f_2^*(y_i|x_i = x) \right)
\]

\[
= c - \frac{1}{2} \left(\ln |\Sigma_x| + \text{tr} \left(S_x \Sigma_x^{-1} \right) + \ln |\Sigma_{y|x}| \right) + \\
\frac{1}{2} \text{tr} \left(\Sigma_T^{y|x} \Sigma_{y|x}^{-1} \right)
\]

\(T \): target model; \(\vartheta \): vector of parameters in the target model; \(c \): a constant; \(S_x \): observed covariance matrix; \(f_1(x) \) is the density function of a multivariate normal distribution
A Saturated Model

- $f_1(x)$: Observed covariance matrix S_x of x
- $\mu_S(x)$
- Unconstrained covariance matrix $\Sigma_{y|x}^S$

$$LL^S_{\theta}(x, y) = c - \frac{1}{2} \left(\ln |S_x| + \ln |\Sigma_{y|x}^S| + p + q \right)$$

S: saturated model; p and q: number of parameters in the saturated and in the target model, respectively;
θ: vector of parameters in the saturated model; c: a constant
A Quasi-Likelihood Ratio Test (Q-LRT)

Test statistic

\[\Lambda(x, y) := -2N \left(LL^T_\theta (x, y) - LL^S_\theta (x, y) \right) \]

Distribution

It is possible to determine the distribution and critical values of \(\Lambda(x, y) \)
Simulation Study - Example

Population model:
\[\eta = -0.08 + 0.5 \xi_1 + 0.4 \xi_2 + 0.2 \xi_1 \xi_2 + \zeta \]

Analysis model:

Power: \[\eta = \alpha + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \zeta \]
Type I error: \[\eta = \alpha + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \omega_{12} \xi_1 \xi_2 + \zeta \]
Simulation Study - General

- High power rates for various conditions, when sample size is sufficiently large
- Even for $N = 800$ Type I error rates are slightly elevated (between 5% and 7.7%)
Conclusion and Outlook

- Q-LRT (quasi-likelihood ratio test) is a suitable inferential test for nonlinear models, when sample size is sufficiently large.
- Q-LRT is only appropriate for nonlinear SEM estimated with sQML.
- Advantages and disadvantages of the χ^2-Test.
- Robustness of Q-LRT and sQML: simulation study.
Many thanks for your attention!

References

